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Abstract. Relativistic spin-polarized scottenng theory is discussed and the relevmt radral Dirac 
equations for an electron in a potential with a magnetic field component are derived. The 
full solution to the coupled Dimc equations treating spin-xbit coupling and spin pol&ration 
on an equal footing is found and, by matching these wavefunctions at the muffin-tin radius. 
the scattering amplitudes and phase shifts are calculated. The interpretation of these iesulrs 
gives a pictorial view of the interplay between spin-orbit coupling and spin polarization. New 
coupling between states IS observed due to the removal of previously used approximalions. The 
magnitude of this coupling throws doubt on some earlier calculations of magnetocrystalline 
anisotropy energies. A scattering analogue to the genenlized Zeeman effect is also described. 

1. Introduction 

It is clear that a fully satisfactory theory of the electronic structure of condensed matter 
must be able to give a full account of both relativistic and magnetic effects. Such a theory 
is required for the description of phenomena which are intrinsically relativistic such as 
magnetic anistropy energies (Strange era1 1989b) and the polarization dependence of various 
spectroscopies (Ebert e? a1 1991). Furthermore it is desirable to treat spin polarization and 
relativity on an equal footing in electronic structure. Prior to the early 1980s the usual 
procedure was to treat one of these as a perturbation. It is obvious, however, that there 
are many applications for which such an approach is not satisfactory. As an example one 
may cite the actinide elements where electronic properties are strongly and inseparably 
influenced by both effects. Also one may wish to examine the electronic structure of alloys 
where one component is magnetic and the other heavy and hence relativistic (e.g. Nix 
Ptl-, ). Examination of the band structure treating either magnetism or spin-orbit coupling 
perturbatively is clearly invalid over some parts of the concentration range. 

The vast  majority of present-day work on the electronic structure of condensed matter is 
based on the density-functional theory (Hohenberg and Kohn 1964, Kohn and Sham 1965). 
In the late 1970s this was generalized in order to make it applicable to systems in which a 
relativistic treatment of the electrons is necessary (Macdonald and Vosko 1979, Rajagopal 
1978, Ramana and Rajagopal 1979). In particular MacDonald and Vosko developed the 
theory for a many-electron system in the presence of a ‘spin-only’ magnetic field. Although 
this theory ignores diamagnetic effects it is still a suitable basis for treating the problem we 
have referred to above. 

In the mid 1980s this problem was tackled by Strange er al (1984) and also by Feder et 
nl (1983). In particular Strange er al demonstrated how to solve the problem of an electron 
scattering from a single effective potential with a magnetic component. The scattering 
parameters from this were used in a multiple scattering theory (Strange et a1 1989a) to 
perform relativistic KKR calculations (Korringa 1947, Kohn and Rostoker 1954). From 
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this work many observables have been calculated such as magnetic anisotropy energies 
(Strange er 1989~) .  hyperfine fields (Ebert er al 1988). magnetic dichroism (Ebert et al 
1991, Strange er al 1991) and magneto-x-ray effects (Strange and Gyorffy 1990, Gotsis and 
Strange 1994). 

As was shown by Strange et al (1984) the radial KohnSham-Dtrac equation for an 
electron experiencing a potential with a magnetic component becomes two infinite sets of 
coupled partial differential equations, one set for even and the other set for odd values of 
the 1 quantum number, for each value of the mj quantum number. By neglecting coupling 
between states I and 1 + 2 they were able to reduce this to sets of four coupled partial 
differential equations, find the solutions, and incorporate them into a single-site scattering 
theory. In this paper we reintroduce this coupling to give a complete solution of the Dirac 
equation in the presence of a spin-only magnetic field. 

Ackermann and Feder (1984) have briefly discussed the solution of the radial equations 
including the full coupling. However, they give little discussion of the details of how they 
treated the infinite set of coupled equations, and simply state that the effect is negligible 
for their purposes. Here, we present a careful and detailed study of the effect of the extra 
coupling on the single-site scattering, and show that it may well be of significance in the 
calculation of certain quantities in condensed-matter physics. 

In the next section we  mention the relativistic density functional theory. Then we go 
on to write down and solve the radial Dirac equations for this case. Next we develop a 
fully relativistic single site scattering theory and use our solutions of the Dirac equation 
to calculate t matrices and scattering amplitudes. As an example we apply this theory to 
scattering from a single magnetic platinum atom. explicitly calculating resonance energies, 
leading to the Zeeman effect. Finally, we discuss the extension of this work to multiple- 
scattering theory, and its implications for the calculations of observables. 

A C Jenkins and P Strange 

2. Theory 

Density functional theory can be used to study the properties of relativistic electron systems 
in the presence of external fields. It has been shown (Rajagopal 1978, Macdonald and Vosko 
1979) that the ground state energy of such a system with external fields (Vex' ,  A") is indeed 
a functional of the ground state four-current ( n ( r ) ,  J(T)). If the Gordon decomposition of 
the current (Baym 1974) is applied and diamagnetic effects ignored then the KohnSham- 
Dirac equations reduce to 

( - h a  . V + pmcZ+ Vcff[n, m ]  + pu.  E E f f [ n .  m] - Ei)(Pi(r) = 0 (1) 

where 
ou: 

m(r )  = ETrv!(rW(Pi (7) (2) 
i 

E:, is the relativistic exchange-correlation energy functional. E"(?-) is a fictitious magnetic 
field which couples to the 'spin-only' current and U ,  and a are the usual relativistic 
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matrices in the standard representation. In the non-relativistic limit these equations reduce 
to the Kohn-Sham-Pauli equations (Von Barth and Hedin 1972). This formalism isolates 
the dominant part of the problem of the magnetism in metals and alloys in which relativistic 
effects are aIso important. 

The first requirement in the development of a first-principles band-structure method 
based on the density-functional theory is a solution of the above equations for the case 
where the potential and field are those associated with a single scattering centre (Lloyd 
and Smith 1972). B&(T) is taken to be along the z-axis and both V e H ( r )  and B e f f ( r )  are 
assumed to be spherically symmetric inside the muffin-tin radius and constant, often chosen 
to be zero, outside i.e. 

V""(r) = 

and 

B e f f ( r )  = 

V' f f ( r )  if r c r,,, 

constant if r > r ,  

Bef f (r )  if r c r,,, 
constant if r > rm 

Using the Lippmann-Schwinger equation (Newton 1966) it has been shown (Strange 
er 4I 1984, Feder er a1 1983) that the Kohn-Sham-Dirac equation can be separated into 
angular and radial parts for this potential and field. The radial part is 

+ Bef f ( r )  ~ G ( - K " ,  -K' ,  m ; ) c r c K ( r )  (8) 
Y" 

where K is the usual spin-angular quantum number and 

G(K,K' ,m,)  = Tr J dr,$(?)g,X*m,(?) (9) 

The first index K' indicates the component of Y belonging to that specific value of K',  i.e. 
the component from which the relative probability of finding the particles with these values 
of total and orbital angular momenta can be found. The second, K ,  is used to define the 
corresponding properties of the incident beam and thus provide a boundary condition. m; is 
conserved in the scattering process. The exua coupling due to the magnetic field is apparent 
and is determined by non-zero values of G(K,  K ' ,  m,) which occur between j = 1 + f and 
j = I - L ( K  = -1 - 1 and K = 1 respectively) and also between I and I f 2. The coupling 
between l f 2 has been ignored in previous work as it is small if the field or field gradient 
is small. The following work will include, rather than neglect, this I i 2 coupling. 

If the coupling between I f 2 channels is included then the equations return to being a 
set of infinite coupled equations! These equations separate into two sets, one for odd 1 and 
another set for even 1, due to parity of the wavefunction. In order to solve these coupled 
equations an approximation has to be implemented. Strange etal (1984) neglected coupling 
between 1 and 1 f 2  as it is of the order of 1/c4. Coupling between I and 1 5 4  is very small 
especially for low energies. and this is our chosen cut-off point i.e. for dominant 1 = 2 we 
discount contributions from 1 = 6,8, IO. etc. Obviously 1 = 2 is coupled to both 1 = 0 and 
I = 4 so we have to include the coupling between 1 = 0 and I = 4, even though it is small, 
to make the equations self-consistent. 

2 
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2.1. Numerical methods 
The coefficients of G ( K .  K' .  m,) are given in terms of Clebsch-Gordan coefficients, and i n  
the notation of Rose (1961), as 
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and, as already mentioned, the radial Dirac equations are an infinite set of coupled non-linear 
partial differential equations. Since we are going to neglect coupling to values of I 2 6, the 
equations will separate into a finite set of linear simultaneous partial differential equations 
which makes the solution tractable. These equations can be solved using an adaptation of 
the method described by Loucks (1967) and Strange er al (1984). This involves using the 
Milne method with the wavefunction at the first six grid points calculated using the Runga- 
Kutta method. Loucks' method is for two coupled equations and Strange etal extended this 
to four. This method can easily be generalized to n coupled equations where n is dependent 
on mj and 2 < n < 12. 

Initializing the integration is a straightforward generalization of the method of Loucks 
(1967). A series solution near to the origin is taken. It takes the form 

and, as the ratios of f,,r/g,a 
normalization is not necessarv. 

:or all applicable couplings are all that are required, 

If these wavefunctions are examined in the limit c + 00 then the results are consistent 
with those found from a Pauli-like equation in the spin-up-spin-down representation. A 
further check on the validity of the results obtained for the wavefunctions evaluated at r, 
is to take B + 00 and in this limit the results are the same as those obtained from standard 
integral routines i.e. when there is no coupling due to the absence of a magnetic field. 
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for which the index K denotes the values of the orbital and total angular momenta of the 
component of the incident beam which is the boundary condition of the system. The two 
solutions. Woubidc and Uinc*, are matched at the muffin-tin radius and from this system of 
linear equations the t matrices can be evaluated. 

In principle this is the matching of two infinite column vectors for each value of K 
(= K,, ..., K., ... )--but, due to the cut-off in 1 and the fact that mj remains a good quantum 
number, this reduces to, at worst, the matching of two 12 component vectors. These 
vectors are in the form of 12 linear simultaneous equations which, with a little algebraic 
manipulation, can be rearranged to form a matrix equation of the form 

A X = B  (14) 

with a, forming half of the column vector X and t,"; forming the other half. This system 
can be solved, for each K, using standard routines and so we obtain, numerically, the t- 
matrix components for all couplings as a function of energy. These t-matrix components 
must satisfy the optical theorem which mixes all the components of the t matrix 

m! t 
tx:,(c) - t,<+,(c) = - 2 i p C t z , ( c ) t x T , ( c ) .  

xt 

This ensures the conservation of particles during the scattering process. Obviously 

as the coupling is symmetrical. 
The partial wave scattering amplitude is defined as 

When fK.,(<) has no off-diagonal elements a consequence of the optical theorem is that 
fK.t lies on the unitary circle of the Argand plot with its cenhe (0.0.5). The scattering 
is absorptive if fMc, is within the circle and emissive if it is outside. Thus the diagonal 
scattering amplitude can be written 

which defines the phase shifts SKU(c).  These phase shifts, corresponding to the muffin-tin 
potential, have a resonance i.e. a characteristic s-shaped rise in S(c) as a function of energy. 
The point where S(c) = x / 2  is referred to as the resonance energy (cI). If the resonance 
energy is plotted as a function of Bext a diagram analogous to that for the Zeeman splitting 
is obtained. 
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In our case we do not have diagonal scattering amplitudes. so the above theory cannot 
be applied directly to find the phase shifts and hence the resonance energies. However, our 
scattering amplitudes can be put into diagonal form by use of a similarity transform: 

F Q ( ~ )  = UhFK(c)UQ (19) 
where F, is the matrix of scattering amplitudes in the (K, mj) representation and Fe is the 
matrix of scattering amplitudes in its diagonal representation. Unfortunately, in the diagonal 
representation we do not know the good quantum numbers (except for mj); however we 
can still define a phase shift in analogy with the equation above. 

4. Example of Pt 

4.1. The magnetic field 
In order to obtain a physically clear and useful understanding of the above formal solutions, 
it is appropriate to consider a simple illustrative example in which the relative sizes of the 
spin-orbit coupling and spin-polarization effects can vary through a large range. For this 
purpose it is viable to consider a muffin-tin potential well that corresponds to a single atom 
in a platinum crystal in the presence of an applied external magnetic field Be''. The total 
effective magnetic field Bef f  has therefore conhibutions from the induced magnetic moments 
due to Be"'. 

Be*' induces a moment 

m(r) = BOL' xrure(r, r') dr '  (20) s 
where xIusc is the paramagnetic susceptibility of platinum. This leads to 

by integrating over the spherically symmetric Wigner-Seitz sphere, Here xo is the non- 
interacting susceptibility, Z is the Stoner parameter and n(6F) the relativistic density of 
states at the Fermi energy obtained from MacDonald etal (1981). Now if we assume that 

- I  

m(r) = my,(lieyo(r)dr) = mf(r)  

s 
(22) 

in which yo(r) is the spherical component of the magnetic form factor also given by 
MacDonald et al (1981), it follows that the effective magnetic field is 

(23) Eff  B ( r )  = Be'' - dr'G,,[r, T ' ,  n]m(r') = BUa - J(n(r))m(r) 

where 

and 

in the local spin density functional approximation. Finally 

Throughout our results we will work in dimensionless units (du) where 1 du = 
(0.06eFi/2mc) Be''. 
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5. Results 

A very common feature of the 1 = 2 phase shifts corresponding to the muffin-tin potential 
in transition metals is a resonance, a characteristic sharp rise in 6*(E) as a function of 
energy. The point where &(E)  = a12 corresponds to the point where the scattering 
amplitude is purely real. The energy at which this occurs is known as the resonance energy. 
With no external field the scattering amplitude in the (K. m - )  representation is diagonal and 
corresponds to resonant scattering in the j = 9 and j = channels. In figure 1 we show 
the phase shifts as a function of energy for this case. 

s’ 

3.0 - I I I I I I 

2.5 - 
h v1 
c 
.p 2.0 - - 

S 1.5 - - 
VI 
._ c 

- 
n 

- 

I I 

Figures 2 4  show Argand plots of the scattering amplitudes as a function of magnetic 
field in the (K, mj)  representation. The field increases linearly. In figures 2 and 3 the 
zero-field case is the unitarity circle and the field increases as one goes inwards. In figure 4 
the zero-field case is zero at all energies, and as the field increases the scattering amplitude 
becomes increasingly non-circular. These figures are shown for two reasons: firstly because 
they are a standard way of displaying scattering amplitudes and secondly to facilitate direct 
comparison with the earlier work of Strange et al  (1984). However such figures do not 
tell the whole story as the energy dependence of the resonance is hidden in these figures. 
Therefore in figures 5-7 we redisplay these results as three-dimensional plots which enables 
us to display qualititively the energy dependence of the scattering amplitudes. In figures 5 
and 6 the resonance in the phase shift is represented as a complete twist of the scattering 
amplitude. For the largest fields used here the off-diagonal scattering represented by figure 7 
is of the same order as the diagonal scattering. 

We can see from these figures that, as the field increases, the diagonal scattering 
amplitudes leave the unitarity circle, and at the same time the off-diagonal components 
between (K, m,) and ( - K  - 1,mj) appear. This must occur if we are to satisfy the optical 
theorem. Eventually a second loop appears in the diagonal elements of the scattering 
amplitude. This corresponds to the appearance of two peaks in the scattering cross section, 
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1.( 

2 0.: .- 

0. 
5 0.0 

real 

0.5 

Figure 2. The x = 2, mj = i component of the scatrering amplitude 3s a function of magnetic 
field. Field increases linearly. 

and comparison with figure 7 shows that i t  corresponds with the appearance of a kink in the 
off-diagonal scattering amplitude. In the scattering cross section this would appear as the 
emergence of two peaks so that the state with quantum numbers ( K ,  mi) is now scattering 
significantly to states with quantum numbers ( - K  - 1. m,) as well as (K, mj). As the field 
continues to increase the loops become larger and the kink in figure 7 more pronounced. 
This corresponds to an increasing separation of the peaks as might be expected. 

Figures 8 and 9 show the most important of the new couplings. This is the coupling of 
j = f, 1 = 0 to j = 7.1 = 2 and j = f .  1 = 2. In this and all subsequent three-dimensional 
Argand plots the zero-field case is represented by a vertical line through the origin and 
parallel to the energy axis. Increasing field is represented by the graphs moving further 
away from this case. Clearly, these off-diagonal scattering amplitudes have significant 
structure and i t  can be seen that they are small, but appreciable, at the resonance energy. 

Figures 10-13 show the coupling between 1 = 2 and I = 4. Evidently this is smaller 
still. Clearly the coupling to K = 4 is notably larger than the coupling to K = -5 although 
they both correspond to 1 = 4. This is because the wavefunctions gT2 and f:; occur in a 
differential equation for g"i, and f-";., whereas *Ti,, and fin,, do not, and similarly for 

3 
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1 .a 

0.5 .- 

0.0 
-0.5 0.0 0.5 

real 
Figure 3. The x = -3, mj = 
field. Field increases linearly. 

component of the scattering amplitude 85 a function of magnetic 

K' = - 3. Hence the coupling of I = 2 states to K = -5 is of the order of l/c* of the 
coupling to K = 4. 

Figures 14 and 15 show the coupling between 1 = 0 and t = 4. As expected this 
coupling is very small but its inclusion is necessary for the t-matrix components to satisfy 
the optical theorem accurately. 

We have also calculated the scattering amplitudes for the odd values of the I quantum 
number. However metallic platinum has only a very small amount of odd I character around 
the Fermi energy and so the odd scattering amplitudes are not very structured and so we 
do not display them explicitly. We can also, of course, calculate the scattering amplitudes 
for K = K' = 4 or -1 for example, and it was necessary to do this when we solved the 
equations above. However, such calculations can be done using standard programs and are 
not new, so we do not display those scattering amplitudes here. 

The t matrices can be written in a more familiar Ims representation using 

(27) 
m 

ti.m,-m,,m,,i,.mi-m:.m: = 

For I = I' the t matrices in the I ,  m, s representation are shown by Strange et al (1984). For 

C ( l i j ;  mj - m,m,)t,;C(I'~ j ' :  mi - m:m:). 
YY' 
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0.5 

3 01 E .- 

-0.I 
0.0 

real 

0.5 

Figure 4. The K = -3, K' = 2, mj = $ component of the scattering amplitude as a function of 
magnetic field. Field increases linearly from zeta. 

I # 1' the coupling is very small and writing the scattering amplitudes in this representation 
does not give any further insight into the scattering process. 

We have diagonalized the scattering amplitude matrix using the prescription described 
above and defined phase shifts. These are shown in figure 16 for the I = 2 levels of 
platinum and for a magnetic field of one dimensionless unit. The lower (in energy) four 
phase shifts are the ones that have j = f in the non-magnetic limit; the higher six phase 
shifts correspond to the j = 1 case in the non-magnetic limit. Compare this figure with 
figure 1. Finding the phase shifts for many fields has enabled us to examine the Zeeman 
effect and the result of this is shown in figure 17. This is similar to the results of Strange et 
nl (1984). At the low-field end of this figure we have the Zeeman effect of two spin-orbit 
split levels slightly split by the magnetic field. At the high-field end we have five spin-up 
and five spin-down levels slightly split by the spin-orbit coupling. The intermediate region 
between these cases is around one dimensionless unit where we can see one level has left 
the j = $ levels and is heading for the lower group of levels. This can also be seen in 
the phase shifts of figure 16 where one phase shift is in the middle of the two main groups 
of phase shifts. There is one noteworthy difference from the earlier work in the present 
results. At the high field end the levels are equally spaced here, but in the previous work 



Relativistic spin-polarized scattering theory 

Energy (Ryd) 
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1.0 

0.5 

0.0 
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1.0 

imag. 

real 

Figure 5. The K = 2, m, = 1 component of the scattering amplitude as a function of energy 
for the same magnetic fields as in figure 2. 

there was a notably larger splitting between the more negative mj levels than between the 
higher mi levels. 

6. Discussion 

The single-site scattering theory presented here is a direct generalization of the work of 
Strange et a! (1984). In the correct limit it reduces to their theory. Furthermore, in the 
limit c + 00 it reduces to the non-relativistic scattering theory described by Gyorffy 
(1982) for example. As the magnetic field B 4 0 this work reduces to the relativistic 
single-site scattering theory discussed by Staunton and co-workers (1980) for example. All 
these authors have discussed the generalization of their work to multiple scattering. This is 
facilitated by the fact that the multiple scattering problem can be separated into a part which 
depends only on the single-site scattering t matrices and a part which depends only on the 
geometry of the scattering centres. Furthermore, the formal theory of multiple scattering 
does not depend upon the details of the quantum number coupling of the t matrices, so 
Strange et a1 (1989a) were able to derive a multiple scattering theory for the relativistic 
spin-polarized case (when the 1,lf2 coupling is ignored) by analogy with the non-relativistic 
theory . Clearly much of the work discussed in their paper can be carried over when the 
theory presented here is generalized to multiple scattering. 

This paper represents a first important step in the development of a new multiple- 
scattering formalism. Such a multiple scattering theory can be used in a KKR framework to 
calculate the electronic structure of magnetic materials. Development of such a theory is 
under way. There is only good reason to do this if such a theory can give us new insight 
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1 .O 

hag.  

real 

Figure 6. The I = -3. m, = f component of the scattering amplitude as a function of energy 
for the same magnetic fields as in figure 3. 

0.5 

hag. 

real 

Figure I .  The K = -3, K' = 2. mj = 4 component of the scattering amplitude as a function of 
energy for the same magnetic fields as in figure 4. 
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(x 1E-03) 

4.0 
real (x 1E-03) 

Figure 8. The Y = -1. K' = Z mj = 4 component of the scattering amplitude as a function of 
energy for the same magnetic fields as in figure 4. 

4.0 
real (x 1E-03) 

Figure 9. The K = -1. K' = -3, mj = 4 component of the scattering amplitude as a function 
of energy for the same magnetic fields as in figure 4, 
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Energy (RW 

Figure 10. ?he Y = 2, Y' = 4, mj = 5 component of the scattering amplitude as a function of 
energy for the same magnetic fields as in figure 4. 

1.5 

1 .o 

0.5 

0.0 

real (x 1E06) 

F i w e  11. The x = 2, x' = -5, mj = f mmponent of the scattering amplitude as a function 
of energy for the same magnetic fields as in figure 4. 
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nn IC I / 
, (x 1504) 

real (x 1E-04) 

Figure 12. The K = -3. K' = 4. mi = 4 component of the scattering amplitude as a function 
of energy for lhe Same magnetic fields as in figure 4. 

real (x 1E-05) 
F i w  13. The K = -3. K' = -5, mj = 1. companent of fhe scattering amplitude as B function 
of energy for the same magnetic fields as in figure 4. 
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4.0 
real (x 1E-07) 

Figure 14. The K = - 1. K' = 4. mj = 4 component of the scattering amplitude JS a function 
of energy for the same magnetic fields as in figure 4. 

real ( x  1E-08) 

Figure 15. The Y = -1, Y' = -5 ,  mj = f component of the scattering amplitude as a function 
of energy for the same magnetic fields JS in figure 4, 
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0 02 0.4 0.6 0.8 1 1.2 1.4 1.6 

Figure 16. ?he phase shins as a function of energy for the 1 = 2 levels in pt. The cenval 
dot-dash line is mj = -2.5. the dotted lines an mj = -1.5 and the full lines mj = 0.5. As mj 

changes by one unit from one phase shin to the next .  the values of mj for all other phase shins 
can be deterrmned. 

into the properties of materials, and can calculate quantities not calculable within a less 
sophisticated theory. Two examples of such quantities are as follows. 

Firstly, several authors have attempted to use the theory of Strange et a1 (1989a) or 
theories equivalent to it to calculate magnetocrystalline anisotropy energies in transition 
metals from first principles, and have met with varying degrees of success (see Strange et 
a1 (1989b. 1991). Daalderop er U! (1989), Guo et a1 (1992) for example). First-principles 
calculation of these energies is fraught with technical difficulties as they are of the order of 
microelectronvolts. Even if these problems can be overcome reliably the theory presented 
here shows that if this new coupling is not included such calculations may well yield 
incorrect answers. Figures 8 and 9 show that the previously ignored I ,  1 rt 2 coupling 
affects the t matrices in the thirdlfourth significant figure. It is not clear what effect a 
change in the third/fourth figure of the scattering amplitude at a particular energy will have 
on an energy integrated quantity like magnetocrystalline anisotropy energy. However, the 
scattering amplitude appears in the KKR determinant, the zeroes of which determine the 
energy bands, and so the bands themselves will be affected by an amount of the order of 
a millielechonvolt. To find the anisotropy energy these bands have to be integrated over 
the Brillouin zone and so the new coupling could potentially be responsible for a similar 
change in the calculated anisotropy energy. Therefore, not including it will mean that the 
uncertainties in the calculation will be greater than the quantity being calculated. 

Secondly, the theory of Strange and co-authors (1989a) has proved very successful 
in its use for the interpretation of relativistic spectroscopies such as magnetic dichroism 
in x-ray absorption (Ebert et nl 1991). Most of this theory has assumed an incident 
beam perpendicular to the surface of the magnetic material and parallel to the direction 
of the moment. This work has usually been done in the dipole approximation. Angular 
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I ,  I 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

I._ 

0 1 2 3 
Magnetic Reid Strength 

4 5 

Figure 17. The k m a n  effect in the I = 2 levels of platinum. The lowest line has m, = 1.5. 
the line that crosses from the upper set to the lower set has mj = -2.5 and lhe upper line has 
mj = 2.5. As mj changes by one unit from one phase shin to the next. the values of mj for all 
other phase shifts can be derennined. 

variations in the dichroism may well require the full coupling described above for a complete 
description. Also, going beyond the dipole approximation in such work gives us terms in 
the absorption rate that are several orders of magnitude smaller than the dipole absorption 
rate. Again, to obtain really meaninghl results the extra coupling described in this paper 
must be included. 

One can ask how significant the new coupling described here is compared with other 
approximations made in the calculation of observables. In particular, the solution of the 
Kohn-Sham-Dirac equations for transition metals using KKR methods is usually terminated 
at 1 = 2. Our calculations indicate that terminating the calculations here introduces an 
uncertainty into the results which is of the same order as that introduced by ignoring the 
coupling described in this paper. 

This work removes one of the approximations which go into first principles descriptions 
of the electronic structure of magnetic materials. There are still approximations remaining 
in the theory however. Firstly, we have performed a Gordon decomposition of the four- 
current. Ideally we would like to avoid this and allow the field to couple to the orbital 
angular momentum of the electrons as well as to their spin. This is closely allied to the 
ultimate desire within density functional theory to solve equation ( I )  directly. Secondly we 
have assumed zero field outside the enscribed sphere. Formally, solutions of the Dirac 
equation inside the sphere should be matched to solutions of the Dirac equation with 
a constant potential and a constant magnetic field (Johnson and Lippman 1949). It is 
known that the electrons in the interstitial region can make a significant contribution to 
the magnetic moment. Such contributions would not be treated correctly in the multiple 
scattering generalization of this  work.^ Also, we have taken our field inside the sphere to be 
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spherically symmetric in magnitude and of constant direction 
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